Posted on

Dec 2017-publication in Science: Spectroscopic signatures of localization with interacting photons in superconducting qubits (collaboration with Google-Martinis group)

The international team used photons in Google’s quantum chip to simulate the surprising and beautiful pattern of the ‘Hofstadter butterfly’, a fractal structure characterizing the behaviour of electrons in strong magnetic fields. The results, published 1 December in Science, show how quantum simulators are starting to live up to their promise as powerful tools,…
Read more from CQT highlight for non specialists  ” CQT researchers collaborate in quantum simulations on Google’s superconducting chip” and from USBC highlight ” Simulating physics “

 

This work is highlighted in 12 science news including Strait Time phys.orgeurekalertsciencedailytech2.orghousseniawritingtuc.gr , asian scientist, technology networks, nanowerk, alphagalileo, mgronline 

Science 358, 6367, pp. 1175-1179 (2017)

Authors

P. Roushan, C. Neill, J. Tangpanitanon, V.M. Bastidas, A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, E. Je rey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis, and J. Martinis

Abstracts

Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.